SC17 Denver, CO

rvGAHP – Push-Based Job Submission Using Reverse SSH Connections

Workshop: WORKS 2017 (12th Workshop on Workflows in Support of Large-Scale Science)
Authors: Scott Callaghan (University of Southern California)

Abstract: Computational science researchers running large-scale scientific workflow applications often want to run their workflows on the largest available compute systems to improve time to solution. Workflow tools used in distributed, heterogeneous, high performance computing environments typically rely on either a push-based or a pull-based approach for resource provisioning from these compute systems. However, many large clusters have moved to two-factor authentication for job submission, making traditional automated push-based job submission impossible. On the other hand, pull-based approaches such as pilot jobs may lead to increased complexity and a reduction in node-hour efficiency. In this paper, we describe a new, efficient approach based on HTCondor-G called reverse GAHP (rvGAHP) that allows us to push jobs using reverse SSH submissions with better efficiency than pull-based methods. We successfully used this approach to perform a large probabilistic seismic hazard analysis study using SCEC’s CyberShake workflow in March 2017 on the Titan Cray XK7 hybrid system at Oak Ridge National Laboratory.

Workshop Index