P99: The Intersection of Big Data and HPC: Using Asynchronous Many Task Runtime Systems for HPC and Big Data
SessionPoster Reception
Event Type
ACM Student Research Competition
Poster
Reception

TimeTuesday, November 14th5:15pm - 7pm
LocationFour Seasons Ballroom
DescriptionAlthough the primary objectives of the HPC and Big data fields seem disparate, HPC is beginning to suffer from a growing size of its workloads and the limitation of its techniques to handle large amount of data. This places interesting research challenges for both HPC and Big Data on how to marriage both fields together. This poster presents a case study which uses Asynchronous Many Task Runtimes (AMTs) as an exploratory vehicle to highlight possible solutions to these challenges. AMTs presents the unique opportunity for better load balancing, reconfigurable schedulers and data layouts that can take advantage of introspection frameworks, and the ability to exploit a massive amount of concurrency. We use the Performance Open Community Runtime (P-OCR) as a vehicle to port MapReduce operators to the HPC realm. We conduct experiments with both strong and weak scaling experimental format using WordCount and TeraSort as our kernels.