P02: Strassen's Algorithm for Tensor Contraction
SessionPoster Reception
Event Type
ACM Student Research Competition
Poster
Reception

TimeTuesday, November 14th5:15pm - 7pm
LocationFour Seasons Ballroom
DescriptionTensor contraction(TC) is an important computational kernel widely used in numerous applications. It is a multi-dimensional generalization of matrix multiplication(GEMM). While Strassen's algorithm for GEMM is well studied in theory and practice, extending it to accelerate TC has not been previously pursued. Thus, we believe this to be the first work to demonstrate how one can in practice speed up tensor contraction with Strassen's algorithm. By adopting a Block-Scatter-Matrix format, a novel matrix-centric tensor layout, we can conceptually view TC as GEMM for general stride storage, with an implicit tensor-to-matrix transformation. This insight enables us to tailor a recent state-of-the-art implementation of Strassen's algorithm to TC, avoiding explicit transpositions(permutations) and extra workspace, and reducing the overhead of memory movement that is incurred. Performance benefits are demonstrated with a performance model as well as in practice on modern single core, multicore, and distributed memory parallel architectures, achieving up to 1.3× speedup.