ooc_cuDNN: A Deep Learning Library Supporting CNNs over GPU Memory Capacity

Yuki Ito, Ryo Matsumiya, Toshio Endo (Tokyo Institute of Technology)

Background

- Convolutional neural networks (CNNs) are used in many fields.
 - Image recognition, Image processing, speech recognition, etc...
 - cuDNN [1] library can accelerate computation of CNNs
 - Developed by NVIDIA
 - Used by many deep learning frameworks
 - Use graphic processing units (GPUs) effectively

- Motivation
 - It is hard for large scale CNNs to be computed using cuDNN
 - cuDNN can use GPU memory only
 - GPU memory capacity is limited
 - Even computation of one layer may run out of GPU memory

Our solution

- We designed and implemented ooc_cuDNN library.
 - ooc_cuDNN (out-of-core cuDNN) supports large scale CNNs
 - Compatible with cuDNN
 - Enable to compute CNNs that exceed GPU memory capacity
 - Use both GPU and CPU memory
 - Divide layers and filters
 - Each layer (or filter) is put on GPU or CPU memory
 - Divided data are used for computation on GPU with cuDNN.
 - Swap data between CPU and GPU memory
 - Overlap CPU-GPU communication and computation

Optimization(1): Auto-tuning division sizes

- Performance of ooc_cuDNN is affected by each division size.
 - Make performance model
 - Optimize division size based on the model.

\[
\begin{align*}
\frac{\text{time}}{\text{GPU}} = & \frac{\text{fconv} + \text{ftotal} + \text{fdata}}{1} + \left(\frac{\text{fconv}}{\text{ftotal}} - 1 \right) \max(1, \frac{\text{fconv}}{\text{fdata}}) \\
& + \left(\frac{\text{fdata}}{\text{ftotal}} - 1 \right) \max(1, \frac{\text{fdata}}{\text{fconv}})
\end{align*}
\]

- Performance model of convolution

Optimization(2): Fusion of computations

- Performance of low complexity computations is too low in ooc_cuDNN.
 - In those computations, communication cannot be hidden completely.
 - Provide fused functions that perform high complexity computations and low complexity computations at once.

Evaluation

- Apply ooc_cuDNN to CNN application
 - Forward and Backward of VGG16 [2]
 - The required memory size increases according to batch size.
 - Experiment with Tesla P100
 - ooc_cuDNN enables to compute CNN exceeding GPU memory capacity.

Comparison with Unified Memory

- ooc_cuDNN calls cudaMemcpy() explicitly.
 - Recent CUDA has new mechanism named Unified Memory.
 - Address space of CPU and GPU are unified.
 - Data exceeding GPU memory capacity are supported by swapping mechanism.
 - Software prefetch can improve performance.
 - We implemented unified_cuDNN (cuDNN with Unified Memory).
 - Perform Convolution with P100.
 - ooc_cuDNN is \(\times 1.4 \) faster.

Future work

- Optimization considering the entire CNN
 - Which data should be put on CPU memory?
 - Which computation should be fused?
- Co-design with existing deep learning frameworks
 - e.g. TensorFlow, Caffe2
- Support distributed computation

This work is supported by JST CREST, "Software Technology that Deals with Deeper Memory Hierarchy in Post-petascale Era"