
Approximation	Through	Asynchrony

Bounded	Asynchrony	and	Nested	Parallelism	for	Scalable	Graph	Processing
Adam	Fidel,	Nancy	M.	Amato,	and	Lawrence	Rauchwerger	

Parasol	Lab,	Department	of	Computer	Science	and	Engineering,	Texas	A&M	University,
http://parasol.tamu.edu/

• "The	STAPL	Parallel	Graph	Library,"	Harshvardhan,	Adam	Fidel,	Nancy	M.	Amato,	Lawrence	Rauchwerger,	In	Wkshp.	on	Lang.	and	Comp.	for	Par.	Comp.	(LCPC),	Tokyo,	Japan,	Sep	
2012.	
• "STAPL-RTS:	An	Application	Driven	Runtime	System,"		Ioannis Papadopoulos,	Nathan	Thomas,	Adam	Fidel,	Nancy	M.	Amato,	Lawrence	Rauchwerger,	In	Proc.	ACM	Int.	Conf.	
Supercomputing	(ICS),	pp.	425-434	,	Newport	Beach,	CA,	USA,	Jun	2015.	
•“The	STAPL	Parallel	Container	Framework,” Gabriel	Tanase,	Antal	Buss,	Adam	Fidel,	Harshvardhan,	Ioannis	Papadopoulos,	Olga	Pearce,	Timmie	Smith,	Nathan	Thomas,	Xiabing Xu,	
Nedhal	Mourad,	Jeremy	Vu,	Mauro	Bianco,	Nancy	M.	Amato,	Lawrence	Rauchwerger,	In	Proc.	ACM	SIGPLAN	Symp.	Prin.	Prac.	Par.	Prog.	(PPOPP),	Feb	2011.
• “The	STAPL	pView,” Antal Buss,	Adam	Fidel,	Harshvardhan,	Timmie Smith,	Gabriel	Tanase,	Nathan	Thomas,	Xiabing Xu,	Mauro	Bianco,	Nancy	M.	Amato,	Lawrence	Rauchwerger,	In	
Wkshp.	on	Lang.	and	Comp.	for	Par.	Comp.	(LCPC),	Oct	2010.
• “STAPL:	Standard	Template	Adaptive	Parallel	Library,” Antal Buss,	Harshvardhan,	Ioannis Papadopoulos,	Olga	Tkachyshyn,	Timmie Smith,	Gabriel	Tanase,	Nathan	Thomas,	Xiabing Xu,	
Mauro	Bianco,	Nancy	M.	Amato,	Lawrence	Rauchwerger,	In	Haifa	Experimental	Systems	Conference,	Haifa,	Israel,	May	2010.

This research supported in part by NSF awards CNS-0551685, CCF
0702765, CCF-0833199, CCF-1439145, CCF-1423111 CCF-0830753 IIS-
0916053, IIS-0917266, EFRI-1240483, RI-1217991, by NIH NCI R25
CA090301-11, and by DOE awards DE-AC02-06CH11357, DE-
NA0002376, B575363. This research used resources of the National
Energy Research Scientific Computing Center, which is supported by
the Office of Science of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.

• "Fast	Approximate	Distance	Queries	in	Unweighted	Graphs	using	Bounded	Asynchrony,"	Adam	Fidel,	Francisco	Coral,	Colton	Riedel,	Nancy	M.	Amato,	Lawrence	Rauchwerger,	In	Wkshp.	on	
Lang.	and	Comp.	for	Par.	Comp.	(LCPC),	Sep	2016.
• "KLA:	A	New	Algorithmic	Paradigm	for	Parallel	Graph	Computations,"	Harshvardhan,	Adam	Fidel,	Nancy	M.	Amato,	Lawrence	Rauchwerger,	In	Proc.	IEEE	Int.Conf.	on	Parallel	Architectures	and	
Compilation	Techniques	(PACT),	pp.	27-38,	Edmonton,	AB,	Canada,	Aug	2014.	
• "An	Algorithmic	Approach	to	Communication	Reduction	in	Parallel	Graph	Algorithms,"	Harshvardhan,	Adam	Fidel,	Nancy	M.	Amato,	Lawrence	Rauchwerger,	In	Proc.	IEEE	Int.Conf.	on	Parallel	
Architectures	and	Compilation	Techniques	(PACT),	San	Francisco,	CA,	Oct	2015.	
• "A	Hybrid	Approach	To	Processing	Big	Data	Graphs	on	Memory-Restricted	Systems,"	Harshvardhan,	Brandon	West,	Adam	Fidel,	Nancy	M.	Amato,	Lawrence	Rauchwerger,	In	Proc.	Int.	Par.	and	
Dist.	Proc.	Symp.	(IPDPS),	pp.	799-808,	Hyderabad,	India,	May	2015.	
•"Using	Load	Balancing	to	Scalably Parallelize	Sampling-Based	Motion	Planning	Algorithms,"	Adam	Fidel,	Sam	Ade	Jacobs,	Shishir Sharma,	Nancy	M.	Amato,	Lawrence	Rauchwerger,	In	Proc.	Int.	
Par.	and	Dist.	Proc.	Symp.	(IPDPS),	Phoenix,	Arizona,	USA,	May	2014.	

A framework	for	developing	parallel	C++	code
• A	library	of	C++	components	with	interfaces	similar	to	the	(sequential)	
C++	Standard	Template	Library	(STL)

• Open	source:	http://gitlab.com/parasol-lab/stapl

Project	Goals
• Ease	of	use - shared	object	programming	model	provides	consistent	interface	across	
shared	or	distributed	memory	systems

• Efficiency - Application	building	blocks		based	on	C++	STL	constructs	and	
extended,	automatically	tuned	for	parallel	execution

• Portability - ARMI	runtime	system	hides	machine	specific	details	and	provides	
an	efficient,	uniform	communication	interface.	

Parallel	Graph	Container – a	distributed	graph	with	methods	to	access	
vertices	and	edges	that	provides	a	shared-object	view	to	users

Standard	Template	Adaptive	Parallel	Library	(STAPL) STAPL	Graph	Library

References	and	Aknowledgements

Nested	ParallelismBounded	Asynchrony

CO
ST

ASYNCHRONY

Synchronization	Cost
Redundant	Work	Cost
Total	Cost

Graph Container

• SOV provides	uniform	access	to	data	independent	of	
physical	location

• Abstracts	data	distribution	and	communication

• Balances	synchronization	cost	with	
redundant	work

• Redundant	work	due	to	multiple	paths	with	
lack	of	ordering	

• Applicable	to	a	wide	range	of	algorithms	
including	breadth-first	search,	PageRank,	
connected	components,	etc.

Function VertexOperator(v)
if v.color = GREY then 
v.color = BLACK 
VisitAllNeighbors(v, NeighborOp, v.dist+1, v.id) 
return true 

else 
return false 

end 

Function NeighborOperator(u, dist, parent)
if u.dist > dist then 
u.dist← dist
u.parent← parent
u.color← GREY 
return true 

else 
return false 

end

• Problem: Redundant	work	– visiting	
vertices	out	of	order	(high	k)	will	result	in	
having	to	redo	work

• Idea: Only	redo	work	if	new	distance	is	sufficiently	better
• First	approach	with	breadth-first	search	[LCPC	‘16]
• Allow	vertex	distance	to	contain	some	error
- Configurable	parameter	for	tolerance	τ
- Propagate new distance if (d −	dnew)/d	≥	τ

3
2

4
2

(3-2)/3 ≥ 0.5 ?

(4-2)/4 ≥ 0.5 ?✓

do	not	propagate

can	propagate

τ = 0.5

● ●●● ●●● ●●

0.001

0.010

0.100

111111111 128128128128128128128128128161616161616161616222222222 256256256256256256256256256323232323232323232444444444 646464646464646464888888888
k

R
el

at
ive

 e
rro

r

tau
● 0

0.005
0.01
0.02
0.025
0.03
0.075
0.4
0.5

Error of Approximate BFS on TX road network
Cray with p = 512

● ●

●

●
●

●

●

●

●

●

1

2

3
4
5
6
7
89

1010

111111111 128128128128128128128128128161616161616161616222222222 256256256256256256256256256323232323232323232444444444 646464646464646464888888888
k

Ti
m

e 
(s

)

tau
● 0

0.005
0.01
0.02
0.025
0.03
0.075
0.4
0.5

Runtime of Approximate BFS on TX road network
Cray with p = 512

0

1

2

3

4

5
Speedup v fastest KLA BFS. Cray with 512 processors

k-level-asynchronous	Paradigm	(KLA) [PACT‘14]

• Generalization	of	level-synchronous	and	
asynchronous
- Level	synchronous:	BSP-style	iterative	computation,	
global	synchronizations

- Asynchronous:	point-to-point	dependencies,	possible	
redundant	work

- KLA:	traverse	up	to	k hops	before	synchronizing

SGL	Model	– vertex	centric	programming	model	
that	emphasizes	fine-grained	parallelism

• Vertex	operator:	invoked	on	a	single	vertex	and	
describes	work	for	that	particular	vertex	with	
possible	neighbor	visits

• Neighbor	operator:	payload	for	neighbor	visit
Execution	Policies

• k-level-asynchronous	[PACT	’14] – generalization	
of	level-synchronous	and	asynchronous

• Hierarchical	comm.	reduction	[PACT	’15] – Use	
machine	hierarchy	to	optimize	graph	
communication	patterns

• Out-of-core	[IPDPS	’15] – Subgraph	paging	to	disk

Future	work
• Identify	a	set	of	graph	properties,	algorithm	
properties	and	architecture	that	enable	a	
performance	benefit	with	KLA

• Dynamic	(streaming)	graph	computations
• Heterogeneous	graph	processing	using	
accelerators

Finding	the	right	value	of	asynchrony
• Optimal	value	of	k depends	on	the	
type	of	graph,	the	machine	and	the
algorithm

• Adaptively	tune	k during	execution

Many	real-world	graphs	are	scale-free
• Presence	of	“hub”	vertices	connected	to	most	of	graph
• Load	imbalance	when	processing	visits
• May	not	fit	into	main	memory	of	single	machine

Distribute	Edges	+	Dynamic	Nested	Parallelism	[LCPC	‘15]
• Nested	parallel	visitation	to	process	a	vertex’s	neighbors
• Provide	several	strategies	for	distributing	the	edges	of	hub	
vertices,	that	can	be	seamlessly	interchanged.

b a

c d

Hub	distributions
• Randomized-balance:	balanced	partition	across	all	
processors

• Neighbors:	place	an	edge	(s,t)	on	the	same	processor	as	t
• Hierarchical:	use	one	processor	in	each	shared-memory	
node

• Adaptive	selection	
is	competitive	with	
oracle

• Level-sync	and	async
stop	scaling	after	32k	
cores

• KLA	scales	up	to	96k	
cores

25

50

100

200

300

16 32 64 128 256 512
Number of processors

M
T

E
P

S

Hubs

everywhere

neighbors

striped

flat

Breadth−first search on Graph 500 on Cray
 Weak scaling with scale 17 per processor, 1 hub

0

1

2

3

1 2 4 8 16 32 64 128 256 512
Number of processors

S
p
e
e
d
u
p
 o

ve
r 

fla
t

Algorithm
BFS
CC
PR

Speedup of graph algorithms with Graph 500 on Cray
Weak scaling with scale 17 per proc

a b c d

a b c d

a b c d

●

●
● ● ● ● ● ● ●

Level Synchronous

3

4

5

6

7
8
9

0.0 0.05 0.1 0.2 0.3 0.4 0.5
τ

Ti
m

e 
(s

)

Approximate BFS Runtime on TX Road Network
on Cray with p = 32768 and k = 32BG/Q


