
Bounded	Asynchrony	and	Nested	Parallelism	for	
Scalable	Graph	Processing

Adam	Fidel
Nancy	Amato	and	Lawrence	Rauchwerger

Parasol	Laboratory
Department	of	Computer	Science	and	Engineering

Texas	A&M	University

Graph	Processing

• Graph	analytics	is	everywhere
- Web,	recommendation,	social	networks,	science,	intelligence

• Today’s	graphs	of	interest	are	extremely	large
- 100s	of	billions	of	nodes	and	trillions	of	edges

• Need	for	efficiently	processing	graphs	at	this	scale
- Parallel	processing	comes	with	its	own	set	of	challenges
- Giraph,	GraphLab,	PowerGraph,	GraphX,	Galois,	Green-Marl
- STAPL	Graph	Library	(SGL)
- https://gitlab.com/parasol-lab/stapl

Bounded	Asynchrony
The	k-level	Asynchronous	Model

Parallel	Graph	Algorithms

• Level-Synchronous	Approach
- BSP-model	iterative	computation
- Global	synchronization	after	each	
level,	no	redundant	work

• Asynchronous	Approach
- Asynchronous	task	execution
- Point-to-point	synchronizations,	
possible	redundant	work

tim
e

tim
e

k-level-asynchronous	Paradigm

• Unifies	level-synchronous	and	asynchronous
• k defines	depth	of	superstep	(KLA	superstep)
- k =	1:	level-synchronous
- k =	diameter:	asynchronous

1 2 3 4 5 6 7 8 9

CO
ST

ASYNCHRONY

Synchronization	Cost

Redundant	Work	Cost

Total	Cost

level-sync

async

SGL	Programming	Model

Function VertexOperator(v)
if v.color	=	GREY	then	
v.color	=	BLACK	
VisitAllNeighbors(v,	NeighborOp,

v.dist+1,	v.id)	
return true	

else
return false	

Function NeighborOp(u,	dist,	parent)
if u.dist	>	dist	then	
u.dist ←	dist
u.parent ←	parent
u.color ←	GREY	
return true	

else	
return false	

(a)	Process	a	vertex	and	issue	neighbor	visits (b)	Process	a	neighbor

KLA	Breadth-First	Search

Scalability	of	KLA	BFS

• Current	strategies	stop	scaling	after	32,768	cores
• KLA	strategy	faster,	scales	better
• Adaptively	change	asynchrony	to	balance	global-synchronization	costs	and	asynchronous	penalty

Choosing	k

• The	level	of	asynchrony	(k)	is	problem	instance	specific

• Model	the	execution	time	for	a	given	k
• In	practice,	we	provide	an	adaptive	selection	method	for	k

KLA	in	Other	Frameworks

• 16	cores	on	a	single	Cray	XK6m	node
• Modified	Level-Synchronous	worklist	for	Galois	to	allow	for	KLA
• Improvement	dependent	on	graph	type
• Performance	improves	vs.	level-sync	and	async executions

Sp
ee
du

p

KLA BFS in Galois on CrayXK6m
100

%

10%

1%

Sp
ee

du
p

Approximation	Through	
Asynchrony

Case	Study	with	Breadth-first	Search

Distance	Queries

• Shortest	path	between	pair	of	vertices	in	a	graph

• Many	important	applications	for	graphs
- Distances	in	road	networks,	connections	in	social	networks

• Use	parallel	and	distributed	algorithms

• Use	approximation to	reduce	work	(and	execution	time)

• Example:	approximate	distances	between	vertices
- Speed	up	applications	that	can	tolerate	error
- Unweighted	graphs,	parallel	breadth	first	search

Parallel	Approximate	Breadth-First	Search

• A new	asynchronous	
approximate	breadth-first	search	
algorithm

• Increase	asynchrony	
(parallelism)	by	reducing	
redundant	work

• Based	on	the	k-level-
asynchronous	paradigm

1

2

3

4

14
4

33
3S

P
59

8a

ad
ap

tive

ch
an

ne
l−5

00 M6

NACA00
15 NLR

pa
cki

ng
−5

00

txr
oa

dn
et

ve
ntu

riL
eve

l3

vsp
_b

css
tk3

0

graph

Sp
ee

du
p

Speedup vs. fastest KLA BFS
Cray with 512 processors.

Speedup	over	fastest	KLA	BFS

Where	is	the	redundant	work?

0

1 2

3

1

2

Example

Avoiding	Redundant	Work

0

1 2

1

32

Approximate	Distance

Approximate	Distances

• If	better	distance	dnew arrives,	only	propagate	if	sufficiently	better	
than	current	distance	d
- Define	a	tolerance	0	≤	τ	<	1	

• Propagate	new	distance	if	(d −	dnew)/d	≥	τ

KLA	Approximate	Breadth-First	Search

3

τ =	0.4

2

(3-2)/2	≥	0.4

3
2

Approximate	Distances

• If	better	distance	dnew arrives,	only	propagate	if	sufficiently	better	
than	current	distance	d
- Define	a	tolerance	0	≤	τ	<	1	

• Propagate	new	distance	if	(d −	dnew)/d	≥	τ

KLA	Approximate	Breadth-First	Search

3

τ =	0.6

2

(3-2)/2	≥	0.6	?

2

Approximate	BFS

Function ApproxNeighOp(u,	dist,	par)
if u.dist >	dist then	
u.dist ← dist
if (u.prop - dist)/u.prop ≥	τ then
u.parent ←	par
u.color ←	GREY	
u.prop ←	dist
return true	

else	
return false	

Function NeighborOp(u,	dist,	par)
if u.dist >	dist then	
u.dist ←	dist

u.parent ←	par
u.color ←	GREY	

return true	
else	
return false	

(a)	Approximate (b)	Original

Error	Bounds

• d(v):	Exact	distance	from	source
• dτk(v):	Distance	found	with	approximate	algorithm

• At	the	end	of	the	algorithm,	all	reachable	vertices	will	have	distance	
dτk(v)	≤	k × d(v)	

• Proof	in	the	paper

Experimental	Setup

• Implemented	in	STAPL	using	STAPL	Graph	Library

• Cray-XK7	(TAMU)
- 24	nodes	of	16-core	AMD	Interlagos processors

o 12	single	socket	and	12	dual	socket	nodes.

• IBM-BG/Q	(LLNL)
- 24,576	nodes,	each	node	with	a	16-core	IBM	PowerPC	A2	processor

• Experiments	are	mean	of	32	trials,	with	95%	confidence	intervals

Texas	Road	Network	(performance)

• Exact	algorithm	(τ	=	0)	is	worse	with	higher	asynchrony
• High τ (0.5)	is	faster	with	higher	asynchrony	(2.6x),	but with	error…

●

●

●
●

●

●

●

●

●

Level Sync

1

2

3
4
5
6
78
91010

1 128162 256324 648
k

Ti
m

e
(s

)
tau
● 0

Runtime of Approximate BFS on TX road network
n=1.38M, m=1.92M on Cray with p = 512

●

●

●
●

●

●

●

●

●

Level Sync

1

2

3
4
5
6
78
91010

11 128128161622 256256323244 646488
k

Ti
m

e
(s

) tau
● 0

0.005

Runtime of Approximate BFS on TX road network
n=1.38M, m=1.92M on Cray with p = 512

●

●

●
●

●

●

●

●

●

Level Sync

1

2

3
4
5
6
78
91010

111 128128128161616222 256256256323232444 646464888
k

Ti
m

e
(s

) tau
● 0

0.005
0.01

Runtime of Approximate BFS on TX road network
n=1.38M, m=1.92M on Cray with p = 512

●

●

●
●

●

●

●

●

●

Level Sync

1

2

3
4
5
6
78
91010

111111111 128128128128128128128128128161616161616161616222222222 256256256256256256256256256323232323232323232444444444 646464646464646464888888888
k

Ti
m

e
(s

)

tau
● 0

0.005
0.01
0.02
0.025
0.03
0.075
0.4
0.5

Runtime of Approximate BFS on TX road network
n=1.38M, m=1.92M on Cray with p = 512

Texas	Road	Network	(error)

● ●●● ●●● ●●

0.001

0.010

0.100

111111111 128128128128128128128128128161616161616161616222222222 256256256256256256256256256323232323232323232444444444 646464646464646464888888888
k

R
el

at
ive

 e
rro

r

tau
● 0

0.005
0.01
0.02
0.025
0.03
0.075
0.4
0.5

Error of Approximate BFS on TX road network
Cray with p = 512

• Relative	error	for	distance	of	a	vertex		(dτk(v)	−	d(v))/d(v)
• Shown	is	mean	of	all	vertices

• Higher	values	of	k	and	τ	lead	to	higher	error

Random	neighborhood	

• Lower	speedup	(1.12x),	but	lower	error

●

●

●

●

●

Level Sync

8
9

1010

20

30

128128128128128128222222 323232323232 512512512512512512888888
k

Ti
m

e
(s

)

tau
● 0

0.1
0.2
0.4
0.5
0.75

Runtime of Approximate BFS on Rand Neighbor
n=1M, m=16 on Cray with p = 512

●● ● ●●0.000

0.001

0.002

0.003

128128128128128128222222 323232323232 512512512512512512888888
k

R
el

at
ive

 e
rro

r tau
● 0

0.1
0.2
0.4
0.5
0.75

Error of Approximate BFS on Rand Neighbor
n=1M, m=16 on Cray with p = 512

Texas	Road	Network	(BG/Q)

• Fixed	value	of	k,	varying	τ
• Higher	τ	gives	better	performance,	with	more	error

●

●
● ● ● ● ● ● ●

k=32 Exact

Level Synchronous

3

4

5

6

7
8
9

0.0 0.05 0.1 0.2 0.3 0.4 0.5
τ

Ti
m

e
(s

)

Approximate BFS Runtime on TX Road Network
on BG/Q with p = 32768 and k = 32

●

●

●

●
●

● ● ● ●

0.00

0.05

0.10

0.15

0.0 0.05 0.1 0.2 0.3 0.4 0.5
τ

R
el

at
ive

 E
rro

r

Approximate BFS Error on TX Road Network
 on BG/Q with p = 32768 and k = 32

τ τ

Nested	Parallelism
Efficiently	Processing	Scale-Free	Graphs

Scale-Free	Graphs

• Many	real-world	graphs	are	scale-free
- Degrees	follow	a	power-law	distribution
- Presence	of	“hub”	vertices	connected	to	most	of	graph

• Hub	vertices	pose	many	challenges
- Load	imbalance	when	processing	visits
- May	not	fit	into	main	memory	of	single	machine

• Current	techniques	“partition”	the	hubs
- Ghosting,	delegates,	hierarchical	representation
- Rigid	partitioning	and	ad-hoc	solution

Our	Solution

• Use	nested	parallelism	to	visit	edges	during	traversals

• Apply	different	strategies	for	hubs	and	non-hubs
- Provide	several	strategies	for	distributing	the	edges	of	hub	vertices,	that	can	
be	seamlessly	interchanged.

• Same	vertex-centric	specification	of	the	algorithm

Processing	SGL	graph	algorithms

while (spawned	>	0)
spawned	=	0

 for (v in V) par do
 if (v.active)
 for ((v, u) in adj(v)) do

spawn(neighbor-op,	klass,	u,	v.level+1)
 spawned += v.active
 klass += k

Nested	Parallelism

while (spawned	>	0)
spawned	=	0

 for (v in V) par do
 if (v.active)
 for ((v, u) in adj(v)) par	do

spawn(neighbor-op,	klass,	u,	v.level+1)
 spawned += v.active
 klass += k

Nested	Parallel	Visitation

• We	perform	a	map	(parallel	for	all)	inside	of	the	vertex	processing
• For	distributed	vertices,	nested	parallel	algorithm	executes	on	
locations	that	store	edges	for	v

Adjacency	List	Partitions

• Randomized-Balanced
- Use	the	same	set	of	locations	of	graph
- Create	a	balanced	partition	across	those	locations

• Neighbors
- Use	the	same	set	of	locations	of	graph
- Place	an	edge	(s,t)	on	the	same	location	as	t

• Hierarchical
- Use	only	one	location	per	shared-memory	node
- Create	a	balanced	partition	across	those	locations

Breadth	First	Search

• Hubs	are	chosen	by	selecting	top	vertices	based	on	degree
• All	strategies	are	faster	than	flat
• Hierarchical	is	significantly	faster	than	the	others	on	Cray

25

50

100

200

300

16 32 64 128 256 512
Number of processors

M
T

E
P

S

Hubs

everywhere

neighbors

striped

flat

Breadth−first search on Graph 500 on Cray
 Weak scaling with scale 17 per processor, 1 hub

Other	Algorithms

• Other	algorithms	besides	BFS
• Speedup	is	Tflat /	Toracle where	Toracle is	the	fastest	nested	configuration

0

1

2

3

1 2 4 8 16 32 64 128 256 512
Number of processors

S
p

e
e

d
u

p
 o

ve
r

fla
t

Algorithm
BFS
CC
PR

Speedup of graph algorithms with Graph 500 on Cray
Weak scaling with scale 17 per proc

Conclusion

• Bounded	asynchrony	can	increase	performance	of	graph	algorithms

• Asynchrony	can	be	used	to	tradeoff	error	for	performance

• Nested	parallelism	boosts	performance	of	algorithms	in	the	presence	
of	hubs

