Parasol

Bounded Asynchrony and Nested Parallelism for
Scalable Graph Processing

Adam Fidel

Nancy Amato and Lawrence Rauchwerger

Parasol Laboratory
Department of Computer Science and Engineering
Texas A&M University

{a%ol Graph Processing

Graph analytics is everywhere
Web, recommendation, social networks, science, intelligence

a

(5 NETFLX @ f 0 LosAlamos

Today’s graphs of interest are extremely large
100s of billions of nodes and trillions of edges

Need for efficiently processing graphs at this scale
Parallel processing comes with its own set of challenges
Giraph, GraphlLab, PowerGraph, GraphX, Galois, Green-Marl
STAPL Graph Library (SGL)
https://gitlab.com/parasol-lab/stapl

Parasol

Bounded Asynchrony

The k-level Asynchronous Model

time

Level-Synchronous Approach
BSP-model iterative computation
Global synchronization after each

level, no redundant work

Local
Computation

Communication

Barrier
Synchronization

Processors

[[]]1]]
SIS

@ol Parallel Graph Algorithms

Asynchronous Approach

Asynchronous task execution

Point-to-point synchronizations,
possible redundant work

Processors
Computation
Tasks * 22000
R) ""* 9 ©
Interleaved / ' [
. O o
Communication ¢ : o
o

awn

{a%ol k-level-asynchronous Paradigm

level-sync o
== Synchronization Cost

== Redundant Work Cost

----- Total Cost

COST

async

ASYNCHRONY

* Unifies level-synchronous and asynchronous
* k defines depth of superstep (KLA superstep)

- k =1: level-synchronous
- k = diameter: asynchronous

72 N\, SGL Programming Model
ParaSOI KLA Breadth-First Search

Function VertexOperator(v) Function (u, dist, parent)
if v.color = GREY then if u.dist > dist then
v.color = BLACK u.dist <& dist
VisitAlINeighbors(v, , u.parent < parent
v.dist+1, v.id) u.color &< GREY
return true return true
else else
return false
return false

(a) Process a vertex and issue neighbor visits (b) Process a neighbor

“Parasol Scalability of KLA BFS

KLA vs. Level-Sync BFS on Synthetic RoadNetwork
9.63 Billion Vertices, 10.2 Billion Edges on Cray XE6

700 + KLA
Level-Synchronous
- High Asynchron
. 525 L Asyneniony

Time (seconds
w
o)
o

—
~
o

0
2048 4096 8192 16k 32k 64k 96k

Processors

Current strategies stop scaling after 32,768 cores
KLA strategy faster, scales better
Adaptively change asynchrony to balance global-synchronization costs and asynchronous penalty

@d Choosing k

* The level of asynchrony (k) is problem instance specific

KLA Model for RoadNet-TX on Cray XE6 KLA Model for Delaunay-20 on Cray XE6
1.4 = Boal 12 + Real
1.2 # Predicted 10 # Predicted
» 1 @
ie] T 8
& &
'S 0.8 Q
3 3 6
o 06 °
£ E 4
F 04 =
0.2 2
0 0
1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256

Level of asynchrony (k) Level of asynchrony (k)

* Model the execution time for a given k
* In practice, we provide an adaptive selection method for k

@ol KLA in Other Frameworks

* 16 cores on a single Cray XKém node

* Modified Level-Synchronous worklist for Galois to allow for KLA
* Improvement dependent on graph type

* Performance improves vs. level-sync and async executions

KLA BFS in Galois on CrayXKém
100

% MWMRGG-24 G500-24
M Delaunay-24 = Google
M Texas B Europe
10% I |
2 16

1%

‘Speedup

Number of Processors

Parasol

Approximation Through
Asynchrony

Case Study with Breadth-first Search

@ol Distance Queries

Shortest path between pair of vertices in a graph

Many important applications for graphs
Distances in road networks, connections in social networks

Use parallel and distributed algorithms

Use approximation to reduce work (and execution time)

Example: approximate distances between vertices
Speed up applications that can tolerate error
Unweighted graphs, parallel breadth first search

@ol Parallel Approximate Breadth-First Search

* A new asynchronous
approximate breadth-first search e oosasare
algorithm

w
1

* Increase asynchrony
(parallelism) by reducing
redundant work -

Speedup
iy

S cgb"’
* Based on the k-level- S e & v @Q@V ¢
asynchronous paradigm araph

72~ N\, Whereisthe redundant work?
Parasol ...

I
3 o

Avoiding Redundant Work

72 \
ParaSOI Approximate Distance

e g

»
>

Approximate Distances
ParaSOI KLA Approximate Breadth-First Search

* If better distance d,,, arrives, only propagate if sufficiently better
than current distance d

- Define atolerance0<t<1

* Propagate new distance if (d -d,.,)/d 2T

Approximate Distances
ParaSOI KLA Approximate Breadth-First Search

* If better distance d,,, arrives, only propagate if sufficiently better
than current distance d

- Define atolerance0<t<1

* Propagate new distance if (d -d,.,)/d 2T

@ol Approximate BFS

Function ApproxNeighOp(u, dist, par)
if u.dist > dist then
u.dist & dist

u.parent < par
u.color &< GREY
u.prop < dist
return true
else
return false

(a) Approximate

Function NeighborOp(u, dist, par)
if u.dist > dist then
u.dist & dist

u.parent < par
u.color &< GREY

return true
else
return false

(b) Original

@ol Error Bounds

d(v): Exact distance from source
d%(v): Distance found with approximate algorithm

At the end of the algorithm, all reachable vertices will have distance
d*.(v) < k x d(v)

Proof in the paper

“Parasol Experimental Setup
Implemented in STAPL using STAPL Graph Library

Cray-XK7 (TAMU)

24 nodes of 16-core AMD Interlagos processors
12 single socket and 12 dual socket nodes.

IBM-BG/Q (LLNL)
24,576 nodes, each node with a 16-core IBM PowerPC A2 processor

Experiments are mean of 32 trials, with 95% confidence intervals

@ol Texas Road Network (performance)

Runtime of Approximate BFS on TX road network
n=1.38M, m=1.92M on Cray with p = 512

1Q -
tau

0.005
0.01
LovelS >¢<0.02
T evel Sync 250,025
e = 7 0.03
14+ 0.075
[0.4
0.5

)] W S~ O10O~N0XaO
1 1 [
o

Time (s)

1 2 4 8 16 32 64 128 256
k

Exact algorithm (t = 0) is worse with higher asynchrony
High t (0.5) is faster with higher asynchrony (2.6x), but with error...

{a%ol Texas Road Network (error)

Error of Approximate BFS on TX road network
Cray with p = 512

tau
0
0.005
0.01
>¢0.02
< 0.025
<#0.03
0.075
0.4
> 0.5

0.100 %

Relative error
o
Q
(@)

0.001 =

1 2 4 8 16 32 64 128 256
kK

Relative error for distance of a vertex (d%(v) - d(v))/d(v)
Shown is mean of all vertices

Higher values of k and t lead to higher error

{a%ol Random neighborhood

Runtime of Approximate BFS on Rand Neighbor Error of Approximate BFS on Rand Neighbor
n=1M, m=16 on Cray with p =512 n=1M, m=16 on Cray with p = 512
301 _ e e o
Level Sync e R *
0.003 -
20+ 0 5 ’ak/ 0
e 0.1 ® 0.002- / 0.1
o +0.2 o +0.2
= >< 0.4 5 > 0.4
% 0 € 0.001 - 0.5
10- i3 0.75 BE- 0.75
9- ¥ R s
81 , , , 0.000—
2 8 32 128 512 2 8 32 128 512
K k

Lower speedup (1.12x), but lower error

{a%ol Texas Road Network (BG/Q)

Approximate BFS_ Runtime on TX Road Network Approximate BFS Error on TX Road Network
on BG/Q with p = 32768 and k = 32 on BG/Q with p = 32768 and k = 32
9-
8- Level Synchronous
7-
0.15
6-
35 X £
() [0} 0.10
Ey =
= k=32 Exact %
o
3- 0.05-
l l ‘ ‘ 0.00—
0.0 0.05 0.1 0.2 0.3 0.4 05 0.0 0.05 0.1 0.2 0.3 0.4 05
T T

Fixed value of k, varying t
Higher t gives better performance, with more error

Parasol

Nested Parallelism

Efficiently Processing Scale-Free Graphs

@ol Scale-Free Graphs

Many real-world graphs are scale-free
Degrees follow a power-law distribution
Presence of “hub” vertices connected to most of graph

Hub vertices pose many challenges
Load imbalance when processing visits
May not fit into main memory of single machine

Current techniques “partition” the hubs
Ghosting, delegates, hierarchical representation
Rigid partitioning and ad-hoc solution

@ol Our Solution

Use nested parallelism to visit edges during traversals

Apply different strategies for hubs and non-hubs

Provide several strategies for distributing the edges of hub vertices, that can
be seamlessly interchanged.

Same vertex-centric specification of the algorithm

@ol Processing SGL graph algorithms

while (spawned > 0)
spawned =0

for (v in V) par do

if (v.active)
for ((v, u) in adj(v)) do
spawn(neighbor-op, klass, u, v.level+1)

spawned += v.active

klass += k

@ol Nested Parallelism

while (spawned > 0)
spawned =0

for (v in V) par do

if (v.active)
for ((v, u) in adj(v)) pardo
spawn(neighbor-op, klass, u, v.level+1)

spawned += v.active

klass += k

{a%ol Nested Parallel Visitation

void visit all neighbors(v, op)

map(resolve_neighbor, v.edges(), op)

void resolve_neighbor(e, op)
spawn(op, e.target)

* We perform a map (parallel for all) inside of the vertex processing

* For distributed vertices, nested parallel algorithm executes on
locations that store edges for v

{ara\sol Adjacency List Partitions

* Randomized-Balanced ﬂﬂﬂu

- Use the same set of locations of graph
- Create a balanced partition across those locations

* Neighbors
- Use the same set of locations of graph
- Place an edge (s,t) on the same location as t

* Hierarchical
- Use only one location per shared-memory node
- Create a balanced partition across those locations

{a%ol Breadth First Search

Breadth—first search on Graph 500 on Cray
Weak scaling with scale 17 per processor, 1 hub

300 - /
200 -
/ Hubs

) 100 - everywhere
é -®- neighbors
S -@- striped
50 - flat
25-
1 1 1 1 1 1
16 32 64 128 256 512

Number of processors

Hubs are chosen by selecting top vertices based on degree
All strategies are faster than flat

Hierarchical is significantly faster than the others on Cray

{a%ol Other Algorithms

Speedup of graph algorithms with Graph 500 on Cray
Weak scaling with scale 17 per proc
3,

—_
1

= I
=2- u —

o - — Algorithm
o BFS

g cC

S Hrr

o)

o

w

0, L L (- L L (- (- L L

1 2 4 8 16 32 64 128 256 512
Number of processors

* Other algorithms besides BFS

* Speedup is Ta. / Tyrace Where T, is the fastest nested configuration

@ol Conclusion

Bounded asynchrony can increase performance of graph algorithms
Asynchrony can be used to tradeoff error for performance

Nested parallelism boosts performance of algorithms in the presence
of hubs

