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Graph	Processing

• Graph	analytics	is	everywhere
- Web,	recommendation,	social	networks,	science,	intelligence

• Today’s	graphs	of	interest	are	extremely	large
- 100s	of	billions	of	nodes	and	trillions	of	edges

• Need	for	efficiently	processing	graphs	at	this	scale
- Parallel	processing	comes	with	its	own	set	of	challenges
- Giraph,	GraphLab,	PowerGraph,	GraphX,	Galois,	Green-Marl
- STAPL	Graph	Library	(SGL)
- https://gitlab.com/parasol-lab/stapl



Bounded	Asynchrony
The	k-level	Asynchronous	Model



Parallel	Graph	Algorithms

• Level-Synchronous	Approach
- BSP-model	iterative	computation
- Global	synchronization	after	each	
level,	no	redundant	work

• Asynchronous	Approach
- Asynchronous	task	execution
- Point-to-point	synchronizations,	
possible	redundant	work
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k-level-asynchronous	Paradigm

• Unifies	level-synchronous	and	asynchronous
• k defines	depth	of	superstep	(KLA	superstep)
- k =	1:	level-synchronous
- k =	diameter:	asynchronous
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SGL	Programming	Model

Function VertexOperator(v)
if v.color	=	GREY	then	
v.color	=	BLACK	
VisitAllNeighbors(v,	NeighborOp,

v.dist+1,	v.id)	
return true	

else
return false	

Function NeighborOp(u,	dist,	parent)
if u.dist	>	dist	then	
u.dist ←	dist
u.parent ←	parent
u.color ←	GREY	
return true	

else	
return false	

(a)	Process	a	vertex	and	issue	neighbor	visits (b)	Process	a	neighbor

KLA	Breadth-First	Search



Scalability	of	KLA	BFS

• Current	strategies	stop	scaling	after	32,768	cores
• KLA	strategy	faster,	scales	better
• Adaptively	change	asynchrony	to	balance	global-synchronization	costs	and	asynchronous	penalty



Choosing	k

• The	level	of	asynchrony	(k)	is	problem	instance	specific

• Model	the	execution	time	for	a	given	k
• In	practice,	we	provide	an	adaptive	selection	method	for	k



KLA	in	Other	Frameworks

• 16	cores	on	a	single	Cray	XK6m	node
• Modified	Level-Synchronous	worklist	for	Galois	to	allow	for	KLA
• Improvement	dependent	on	graph	type
• Performance	improves	vs.	level-sync	and	async executions
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Approximation	Through	
Asynchrony

Case	Study	with	Breadth-first	Search



Distance	Queries

• Shortest	path	between	pair	of	vertices	in	a	graph

• Many	important	applications	for	graphs
- Distances	in	road	networks,	connections	in	social	networks

• Use	parallel	and	distributed	algorithms

• Use	approximation to	reduce	work	(and	execution	time)

• Example:	approximate	distances	between	vertices
- Speed	up	applications	that	can	tolerate	error
- Unweighted	graphs,	parallel	breadth	first	search



Parallel	Approximate	Breadth-First	Search

• A new	asynchronous	
approximate	breadth-first	search	
algorithm

• Increase	asynchrony	
(parallelism)	by	reducing	
redundant	work

• Based	on	the	k-level-
asynchronous	paradigm
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Speedup vs. fastest KLA BFS
Cray with 512 processors.

Speedup	over	fastest	KLA	BFS



Where	is	the	redundant	work?
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Avoiding	Redundant	Work
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Approximate	Distances

• If	better	distance	dnew arrives,	only	propagate	if	sufficiently	better	
than	current	distance	d
- Define	a	tolerance	0	≤	τ	<	1	

• Propagate	new	distance	if	(d −	dnew)/d	≥	τ

KLA	Approximate	Breadth-First	Search
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Approximate	Distances

• If	better	distance	dnew arrives,	only	propagate	if	sufficiently	better	
than	current	distance	d
- Define	a	tolerance	0	≤	τ	<	1	

• Propagate	new	distance	if	(d −	dnew)/d	≥	τ

KLA	Approximate	Breadth-First	Search
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Approximate	BFS

Function ApproxNeighOp(u,	dist,	par)
if u.dist >	dist then	
u.dist ← dist
if (u.prop - dist)/u.prop ≥	τ then
u.parent ←	par
u.color ←	GREY	
u.prop ←	dist
return true	

else	
return false	

Function NeighborOp(u,	dist,	par)
if u.dist >	dist then	
u.dist ←	dist

u.parent ←	par
u.color ←	GREY	

return true	
else	
return false	

(a)	Approximate (b)	Original



Error	Bounds

• d(v):	Exact	distance	from	source
• dτk(v):	Distance	found	with	approximate	algorithm

• At	the	end	of	the	algorithm,	all	reachable	vertices	will	have	distance	
dτk(v)	≤	k × d(v)	

• Proof	in	the	paper



Experimental	Setup

• Implemented	in	STAPL	using	STAPL	Graph	Library

• Cray-XK7	(TAMU)
- 24	nodes	of	16-core	AMD	Interlagos processors

o 12	single	socket	and	12	dual	socket	nodes.

• IBM-BG/Q	(LLNL)
- 24,576	nodes,	each	node	with	a	16-core	IBM	PowerPC	A2	processor

• Experiments	are	mean	of	32	trials,	with	95%	confidence	intervals



Texas	Road	Network	(performance)

• Exact	algorithm	(τ	=	0)	is	worse	with	higher	asynchrony
• High τ (0.5)	is	faster	with	higher	asynchrony	(2.6x),	but with	error…
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Texas	Road	Network	(error)

● ●●● ●●● ●●

0.001

0.010

0.100

111111111 128128128128128128128128128161616161616161616222222222 256256256256256256256256256323232323232323232444444444 646464646464646464888888888
k

R
el

at
ive

 e
rro

r

tau
● 0

0.005
0.01
0.02
0.025
0.03
0.075
0.4
0.5

Error of Approximate BFS on TX road network
Cray with p = 512

• Relative	error	for	distance	of	a	vertex		(dτk(v)	−	d(v))/d(v)
• Shown	is	mean	of	all	vertices

• Higher	values	of	k	and	τ	lead	to	higher	error



Random	neighborhood	

• Lower	speedup	(1.12x),	but	lower	error
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Texas	Road	Network	(BG/Q)

• Fixed	value	of	k,	varying	τ
• Higher	τ	gives	better	performance,	with	more	error
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Nested	Parallelism
Efficiently	Processing	Scale-Free	Graphs



Scale-Free	Graphs

• Many	real-world	graphs	are	scale-free
- Degrees	follow	a	power-law	distribution
- Presence	of	“hub”	vertices	connected	to	most	of	graph

• Hub	vertices	pose	many	challenges
- Load	imbalance	when	processing	visits
- May	not	fit	into	main	memory	of	single	machine

• Current	techniques	“partition”	the	hubs
- Ghosting,	delegates,	hierarchical	representation
- Rigid	partitioning	and	ad-hoc	solution



Our	Solution

• Use	nested	parallelism	to	visit	edges	during	traversals

• Apply	different	strategies	for	hubs	and	non-hubs
- Provide	several	strategies	for	distributing	the	edges	of	hub	vertices,	that	can	
be	seamlessly	interchanged.

• Same	vertex-centric	specification	of	the	algorithm



Processing	SGL	graph	algorithms

while (spawned	>	0)
spawned	=	0

    for (v in V) par do 
        if (v.active) 
            for ((v, u) in adj(v)) do 

spawn(neighbor-op,	klass,	u,	v.level+1)
        spawned += v.active 
    klass += k



Nested	Parallelism

while (spawned	>	0)
spawned	=	0

    for (v in V) par do 
        if (v.active) 
            for ((v, u) in adj(v)) par	do 

spawn(neighbor-op,	klass,	u,	v.level+1)
        spawned += v.active 
    klass += k



Nested	Parallel	Visitation

• We	perform	a	map	(parallel	for	all)	inside	of	the	vertex	processing
• For	distributed	vertices,	nested	parallel	algorithm	executes	on	
locations	that	store	edges	for	v



Adjacency	List	Partitions

• Randomized-Balanced
- Use	the	same	set	of	locations	of	graph
- Create	a	balanced	partition	across	those	locations

• Neighbors
- Use	the	same	set	of	locations	of	graph
- Place	an	edge	(s,t)	on	the	same	location	as	t

• Hierarchical
- Use	only	one	location	per	shared-memory	node
- Create	a	balanced	partition	across	those	locations



Breadth	First	Search

• Hubs	are	chosen	by	selecting	top	vertices	based	on	degree
• All	strategies	are	faster	than	flat
• Hierarchical	is	significantly	faster	than	the	others	on	Cray
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Other	Algorithms

• Other	algorithms	besides	BFS
• Speedup	is	Tflat /	Toracle where	Toracle is	the	fastest	nested	configuration
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Conclusion

• Bounded	asynchrony	can	increase	performance	of	graph	algorithms

• Asynchrony	can	be	used	to	tradeoff	error	for	performance

• Nested	parallelism	boosts	performance	of	algorithms	in	the	presence	
of	hubs


