
Bounded Asynchrony and Nested Parallelism for Scalable Graph Processing

Dissertation Summary

Adam Fidel
Texas A&M University

https://parasol.tamu.edu/people/afidel

Introduction

Processing large-scale graphs has increasingly become a critical component in a variety of fields,
from scientific computing to social analytics. The size of graphs of interest are becoming explosively
large, preventing them from fitting into the memory of a single-processor system and highlighting
the need for fast and efficient methods to process such graphs. Because of this, there exists a clear
need for distributed data structures and parallel algorithms to facilitate the processing of these
large graphs. However, the irregular access pattern for graph workloads, coupled with complex
graph structures, varying topology, and large data sizes makes efficiently executing parallel graph
workloads challenging.

In this dissertation, we develop two broad techniques for improving the performance of graph
traversals and general parallel graph algorithms:

1. Bounded Asynchrony. Increasing asynchrony in a bounded manner allows one to avoid
costly global synchronization at scale, while still avoiding the penalty of unbounded asyn-
chrony including redundant work. In addition, asynchronous processing enables a new family
of approximate algorithms when applications are tolerant to a fixed amount of error.

2. Nested parallelism. Allowing to express graph algorithms in a naturally nested parallel
manner enables us to fully exploit all of the available parallelism inherent in graph algorithms.

Using bounded asynchrony, we are able to scale a breadth-first search (BFS) workload to 98,304
cores, where traditional techniques stop scaling at smaller core counts. Through the use of nested
parallelism, we are able to process scale-free graphs up to 1.6x faster and are able to fit graphs into
memory that would otherwise overload the memory capacity of a node using traditional methods.

Bounded Asynchrony

Parallel graph algorithms are generally expressed in level-synchronous or asynchronous paradigms.
Level-synchronous paradigms iteratively process vertices of a graph level by level. This model
guarantees the current level’s computation to have completed before starting the next one through
the use of global synchronizations at the end of each level. Level-synchronous algorithms tend to
perform well when the number of levels is small. The asynchronous paradigm replaces expensive
global synchronizations with less expensive point-to-point fine-grained synchronizations, which po-
tentially increases the available degree of parallelism and thus may perform better on graphs with
many levels. However, asynchronous algorithms may sometimes perform redundant work. Choos-
ing the right paradigm depends on the system, input graph, and algorithm. This implies different
implementations and optimizations for algorithms, with no easy way to switch between them.

1



KLA vs. Level‐Sync BFS on Synthetic RoadNetwork 
9.63 Billion Vertices, 10.2 Billion Edges on Cray XE6

Ti
m

e 
(s

ec
on

ds
)

0

100

200

300

400

Processors

2048 4096 8192 16k 32k 64k 96k

KLA
Level-Synchronous
Ideal

(a)

Flat

180

200

225

250

300

350

1 2 4 8 16 32 64 128 256 512 1k 2k 4k
Number of hubs

M
T

E
P

S

everywhere
neighbors
striped

Breadth−first Search on Graph 500 on Cray
 64M vertices on 512 processors

(b)

Figure 1: (a) Performance of KLA vs. level-sync BFS on synthetic road network to 98,304 cores
on Hopper and (b) Improvement of using nested parallelism for BFS.

In our initial work, we introduced a new paradigm, k-level-asynchronous (KLA) [2], that allows
parametric control of asynchrony ranging from completely asynchronous execution to partially
asynchronous execution to level-synchronous execution. Partial asynchrony is achieved through the
use of a global synchronization after a certain number (k) of asynchronous levels. In this respect,
KLA may be viewed as a generalized BSP model where each superstep runs an asynchronous
algorithm. A related approach is also used in the ∆-stepping single-source shortest path algorithm,
which can be viewed as a special-case of KLA. This paradigm works in phases, similar to the level-
synchronous paradigm. However, each phase is allowed to proceed asynchronously up to k steps
by creating asynchronous tasks on active vertices.

Experimental Evaluation. We evaluate the improvement in performance and scalability of
KLA by using breadth-first search as an example. We generated a synthetic road network by
stitching together multiple copies of the European road network, which resulted in an input with
9.63 billion vertices and 10.2 billion edges. Figure 1(a) compares the scalability of KLA BFS with
level-synchronous BFS on this road network. The level-synchronous BFS scales to 32,768 cores,
but not beyond, while the KLA BFS is able to scale better until 98,304 cores (96k – the maximum
available processor count) and yield faster running times due to better balancing the synchronization
costs (which become increasingly expensive for large core counts) with wasted work.

Approximation Through Asynchrony

Computing shortest paths in networks is a fundamental operation that is useful for multiple reasons
and many graph algorithms are built on top of shortest paths. For example, computing centrality
metrics and network diameter relies on distance queries. For many large real-world graphs, comput-
ing exact shortest paths is prohibitively expensive and recent work explores efficient approximate
algorithms for this problem. In unweighted graphs, an online distance query can be answered
through the use of breadth-first search (BFS).

We introduce a novel approximate parallel breadth-first search algorithm [1] based on the k-
level-asynchronous paradigm. A high amount of asynchrony in breadth-first search may lead to
redundant work, as the lack of a global ordering could cause a vertex to receive many updates

2



with smaller distances until the true breadth-first distance is discovered. Each update to the
vertex’s state will trigger a propagation of its new distance to its neighbors, potentially leading
to all reachable vertices being reprocessed many times and negating the benefit of asynchronous
processing. Our novel algorithm controls the amount of redundant work performed by controlling
how updates trigger propagation and allowing for vertices to contain some amount of error. In
short, by only sending the improved values to neighbors if the change is large enough, we limit the
amount of redundant work that occurs during execution. We modify the KLA breadth-first search
algorithm by conditionally propagating improved values received from a neighbor update.

To this end, we introduce a new visitor (neighbor operator) for breadth-first search that allows
for the correction of an error and repropagation of the corrected distance under certain conditions.
We use tolerance 0 ≤ τ < 1 to denote the amount of error a vertex will allow until it propagates
a smaller distance. For a visit with current distance d and better distance dnew, we will propagate
the new distance if (d− dnew)/d ≥ τ .

The parameter τ controls the amount of tolerated error. This is a user-defined parameter that
trades accuracy for performance in a KLA BFS. In applications that can tolerate a high degree of
error, a large value of τ could result in signficant performance gains at the cost of accuracy. We
prove an upper bound on the error as a function of degree of approximation τ and k.

Experimental Evaluation. In Figure 2, we evaluate both the execution time and error on
the Texas road network from the SNAP collection on 32,768 cores on the IBM-BG/Q platform.
This graph has 1.3 million vertices and 1.9 million edges. As expected, a lower value of τ results in
slower execution time as more repropagations occur with lower tolerance. In the extreme case of
τ = 0, every message that contains a better distance is propagated and thus it is the same as the
exact version of the algorithm. Figure 2(b) shows the mean error in distance ((dτk(v)−d0(v))/d0(v))
as we vary the error tolerance τ . As expected, higher values of τ induce higher error in the result.
At 32,768 cores, the approximate version is 2.27x faster with around 17% mean error.

●

●
● ● ● ● ● ● ●

Level Synchronous

3

4

5

6

7

8
9

0.0 0.05 0.1 0.2 0.3 0.4 0.5
τ

T
im

e 
(s

)

Approximate BFS Runtime on TX Road Network
on Cray with p = 32768 and k = 32

(a)

●

●

●

●
●

● ● ● ●

0.00

0.05

0.10

0.15

0.0 0.05 0.1 0.2 0.3 0.4 0.5
τ

R
el

at
iv

e 
E

rr
or

Approximate BFS Error on TX Road Network
 on Cray with p = 32768 and k = 32

(b)

Figure 2: Approximate BFS on IBM-BG/Q evaluating sensitivity of (a) runtime and (b) error.

Nested Parallelism in Graph Processing

An important class of graphs are scale-free networks, where the vertex degree distribution follows
a power-law. These graphs are known for their presence of hub vertices that have extremely high
degrees and present challenges for parallel computations on these types of graphs. In the presence

3



of hub vertices, simple 1D partitioning (i.e., vertices distributed, edges stored sequentially with
corresponding vertex) of scale-free networks presents challenges to keeping a balanced number of
vertices and edges per processor, as the placement of a hub could overload any one processor.

In this dissertation, we propose a framework [3] to independently control the distribution of
edges on a per-vertex basis, allowing the possibility to express orthogonal strategies for the various
kinds of vertices in the graph. First, we represent the graph as a distributed array of vertices,
with each vertex having a (possibly) distributed array of edges, partitioned in a fine-tuned manner.
Using nested parallel constructs, we can define several strategies for distributing the edges of hub
vertices, that can be interchanged without changing the graph algorithm itself. We present three
initial strategies: partitioning a hub across all processors (EVERYWHERE), partitioning a hub only on
the locations of the target vertices (NEIGHBORS), or partitioning a hub across shared-memory nodes
(STRIPED).

Even though the distribution strategy of the edges changes dynamically, the expression of the
graph algorithm itself remains unchanged. The nested parallel algorithm that executes over the
edges is specified at the algorithmic level. We augment the existing k-level-asynchronous vertex-
centric programming model to support execution on a graph whose edges may not be colocated
with either its source or target vertex.

Experimental Evaluation. Figure 1(b) shows the benefit of using this nested parallel visita-
tion strategy for the Graph 500 benchmark on 512 cores of the Cray platform. We observe that all
strategies show improvement over flat processing for reasonable number of hubs. Specifically, we
see more than a 60% speedup with a single hub using the STRIPED strategy.

Conclusion and Future Work

In this dissertation, we introduced two broad techniques for improving the performance and scal-
ability of parallel graph algorithms: bounded asynchrony and nested parallelism. Through these
techniques, we were able to show large performance improvements for highly irregular and dynamic
graph workloads on large numbers of processors. For future work, we would like to explore further
use cases of bounded asynchrony as it applies to streaming graph computations and heterogeneous
computing environments with accelerators.

References

[1] A. Fidel, F. C. Sabido, C. Riedel, N. M. Amato, and L. Rauchwerger. Fast approximate
distance queries in unweighted graphs using bounded asynchrony. In Languages and Compilers
for Parallel Computing, Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2016.

[2] Harshvardhan, A. Fidel, N. M. Amato, and L. Rauchwerger. KLA: A new algorithmic paradigm
for parallel graph computations. In Proc. Intern. Conf. Parallel Architecture and Compilation
Techniques (PACT), PACT ’14, pages 27–38, New York, NY, USA, 2014. ACM. Conference
Best Paper Award.

[3] I. Papadopoulos, N. Thomas, A. Fidel, D. Hoxha, N. M. Amato, and L. Rauchwerger. Asyn-
chronous nested parallelism for dynamic applications in distributed memory. In Int. Workshop
on Languages and Compilers for Parallel Computing (LCPC), in Lecture Notes in Computer
Science (LNCS), Raleigh, NC, USA, September 2015.

4


